1。了解微分方程及其阶、解、通解、初始条件和特解等概念。
2。掌握变量可分离的微分方程及一阶线性微分方程的解法。
3。会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4。会用降阶法解下列形式的微分方程:y"=f(x)、y"=f(x,y')和y"=f(y,y')。
5。理解线性微分方程解的性质及解的结构。
6。掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方
程。
7。会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非
齐次线性微分方程。
8。会解欧拉方程。
9。会用微分方程解决一些简单的应用问题。
线性代数
一、行列式
行列式的概念和基本性质、行列式按行(列)展开定理
考试要求
1。了解行列式的概念,掌握行列式的性质。
2。会应用行列式的性质和行列式按行(列)展开定理计算行列式。
二、矩阵
矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、
逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、
矩阵的秩、矩阵的等价、分块矩阵及其运算。
考试要求
1。理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩
阵以及它们的性质。
2。掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列
式的性质。
3。理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概
念,会用伴随矩阵求逆矩阵。
4。理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,
掌握用初等变换求矩阵的秩和逆矩阵的方法。
5。了解分块矩阵及其运算。
三、向量
向量的概念、向量的线性组合与线性表示、向量组的线性相关与线性无关、向量组的极大线
性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量空间及其相
关概念、n维向量空间的基变换和坐标变换、过渡矩阵、向量的内积、线性无关向量组的正