“根据这个模型,我在一种典型情况下,分别对光控相控阵列和全移相相控阵列的脉冲压缩进行了数值仿真计算。”
他把电脑调转18o°,推到王晓模面前:
“从这两张结果图中可以看出,全移相相控阵列的脉压最大值比光控延时阵列的最大值低4。21dB,也就是说,信噪比损失了4。21dB。”
“另外,子阵延时光控阵列的脉压的4dB宽度为5。12ns,旁瓣高度为-13。84dB,峰值时间位置为49。9989μs;而全移相阵列的脉压4dB宽度为7。o88ns,旁瓣高度为-26。32dB峰值时间位置为49。9952μs。”
“所以,全移相阵列中LFm信号脉压后主瓣展宽、峰值时间位置偏离较大和损失一定的信噪比。另外,全移相相控阵的宽带LFm信号的频谱结构不再是矩形分布,这会导致脉冲压缩后的分辨率不及预期。”
盯着电脑屏幕上现实的归一化幅度-时间曲线,王晓模并没有马上开口。
毫无疑问,从常浩南得出的结果来看,光控相控阵从机理上就具有传统相控阵雷达无法企及的优势。
尤其是在他此前非常关注的宽角扫描领域。
刚才等电脑开机和打开文档的几分钟功夫,王晓模已经在笔记本上粗略计算出了几个结果。
保守估计,得益于光纤TTd的宽带特性和低损耗,单面光控相控阵的可用扫描角度将能够扩大到±75°,乃至±8o°。
这对于固定的单面,或双面阵天线来说,是一个十分巨大的进步。
但是……
还不够大。
几乎是在看到电脑上面模拟结果的同时,他就产生了一个更加激进的想法。
“常总。”
王晓模把圆珠笔放到一边:
“如果我们不追求扩大扫描角度呢?”
“啊?”这个问题让常浩南一愣。
你之前说要宽角扫描,我这结果都给你算出来了,现在又不用了?
闹呢?
看到他一脸见鬼的表情,王晓模赶紧继续解释道:
“我的意思是,既然扫描角度和瞬时带宽是一对相互矛盾的指标,那光控相控阵雷达既然可以实现同等带宽下的大扫描角,是不是也可以换个思路,实现同等扫描角下的高带宽?”
听到这个思路的常浩南先是低头沉思。
接着眉头微皱。
然后眼露精光。
“应该是……可以!”
他毕竟不是雷达专业出身,刚刚的计算也只是从数学和物理层面进行的理论推导,所以在应用层面的想法上,其实是有点受限的。
之前在南郑的时候,王晓模一直在说宽角扫描的问题,所以他的计算结果也一直在往这个方向去推进。
但现在被对方这么一提醒,他的思路也紧跟着打开了——
雷达的带宽跟网络的带宽并不是一个概念。
它不是一个度单位,而是一个频率单位。
指的是雷达天线在正常工作状态下所能够适配的频带宽度。
我们常说一部雷达“工作在某某波段”。
这个波段范围就是带宽。