八点看小说网

八点看小说网>从小镇做题家到首席科学家月夜孤饮 > 第248章 周易的数学原理(第2页)

第248章 周易的数学原理(第2页)

“好。”

待到他们走了之后,周易才开始嗑药看《周易》。

“当初抽奖抽的强化版专注胶囊用来学《周易》也算是用对了地方。

反正这个东西,用在刀刃上必然是最好的了。”

两天的时间,周易就把周易读得个七七八八了。

不得不说,《周易》确实是一门大智慧的学科,

利用到的数学知识堪称全面,而且都是16世纪之后发展起来的数学知识,

甚至涉及了不少近代的数学知识。

周易一个人在房间内喃喃说道:

“怪不得历代研究《易经》的人都是一代数学大师,里面基本都是数学知识,

要是利用群论等数学分支的知识,还能进一步衍生,所谓的渝高院风水不好的谣言也就不攻自破了。”

周易闭目养神了半个小时,然后在房间之内口述道:

“先写绪论,第一章1。1小节就叫《历代易学家的数学研究综述》。”

结合历史出名人物的结论论证数学对于《周易》的发展,

显然是更有说服力的,所以周易才会把这一章放在第一章。

历朝历代的易学大家为了研究《周易》都孜孜不倦学习数学,

你们这些徒子徒孙敢说《周易》不需要强大的数学知识?

是不是要欺师灭祖?

周易这一招,直接把自己放在了最强的位置。

一旦这些人认识到数学对于《周易》的革新,那么《周易》到底是玄学还是数学,就不好说了。

接下里周易才开始叙述起来数学对于周易的发展,

从集合论与《周易》的关系说起。

周易开始说道:

“集合论是现代数学的基础,它不仅渗透到了数学的各个领域,也渗透到了许多自然科学和社会科学的领域。

德国数学家康托(G。

tor,1845~1918)首先提出了集合的概念,他于1872~1897年间发表了一系列关于集合论的论文,奠定了集合论的基础。”

周易先解释了一下集合论的来历,也为接下来的做准备,只见周易继续说道:

“《系辞》说:‘方以类聚,物以群分。’

这里所说的‘类’与‘群’就与数学中的‘集合’概念非常接近。

易学研究中的许多命题,用集合论的语言来描述,就会更加方便、清楚和精确,有利于揭露问题的本质。

本章先介绍集合论的一些基本概念,然后说明易学问题与集合论中的一些基本概念的联系。”

随后周易把这一大章分成了四个小节来叙述。

。。。

“定义2。2。3:

设A_1,A_2,…,A_n。是n个集合,在A_1中取兀系α_1,在A_2中取元素α_2,…在A_n中取元素α_n,

作成一个有序的n元素组(a_1,a_2,…,a_n,),称为集合A_1,A_2,…,A_n的一个n元序组。A_1,A_2,…,A_n的所有n元序组所成的集合:

D={(a_1,a_2,…,a_n)丨a_1∈A_1,a_2∈

已完结热门小说推荐

最新标签