对于这漫长的时间并没有人在意,在意这个的早已经起身离开了,留下的人无一不希望讲解越详细越好,哪怕他们听不懂。
舞台上,徐川讲解完代数簇与群映射工具,望向了台下的观众。
接下来,便是霍奇猜想的证明了。
尽管从理论上来说,霍奇猜想的证明远比代数簇与群映射工具更加重要。但无论是对于徐川来说,还是对于台下的观众而言,当这份工具被制造出来并学会使用后,剩下的东西就顺理成章了。
这就像是用一把斧头去砍一颗大树一样。
尽管这颗树木庞大到难以想象,但只要时间足够,伱仍然可以用它一点一点的将它砍倒。
利用代数簇与群映射工具去完成霍奇猜想,就像是用一把斧头砍一棵参天大树一样。
或许在未来的某一天,数学界还能找到类似‘电锯’一样更高效的工具,但现在,这把斧头的重要性与锋利性,毋庸置疑。
它顺利的劈开了霍奇猜想那道看不见的枷锁,将新世界的大门展现在了所有人的眼前。
另一边,报告厅的前排,已经被事先安排好了位置的几行座位中,一位老人目光浑浊却深邃无比的看着舞台上的青年。
在这位老人两侧,是另外两名稍显年轻一些老人,一位是普林斯顿高等研究院的皮埃尔·德利涅教授。
另一位,则是马克斯普朗克数学研究所的格尔德·法尔廷斯教授。
有这两位全世界最顶级的数学大拿一左一右的陪伴在身边,可见中间这位老人的身份不凡。
而事实上,他亦如是。
只因为这位老人叫让-皮埃尔·塞尔。
史上最年轻的菲尔兹奖得主、阿贝尔奖的个得主、沃尔夫数学奖,数学史上第一个拿到三奖大满贯的天才数学家。
在2o14年教皇格罗滕迪克老先生离世后,这位老人完全可以说是当今数学界最伟大的学者。
他在拓扑学、代数几何、数论等纯粹数学的研究极深。哪怕是现在已经隐隐有第一人之称的法尔廷斯,在他面前也如同学生一样。
只不过如今塞尔的年岁已经高达九十一岁,早已经退休安享晚年。
事实上,普林斯顿高等研究院并没有给塞尔邀请函,毕竟你得考虑他的年岁和身体状况还能否经得起折腾。
但出乎意料的是,在得知了这个消息后,塞尔坚决要亲自过来,哪怕身边的人再怎么劝导也没有用。
盯着舞台上正认真讲解的少年,塞尔的眼神中朦胧一片,仿佛间,时间像是回到了七十年前年,还在学生的时代的他参加希尔伯特教授的讲座一样。
那道伟岸的身影,和如今的少年是多么相似。
与此同时,随着徐川的讲解,霍奇猜想的证明过程进入了最核心的收尾阶段。
讲台上,徐川翻过一页ppT文稿:“。基于映射Tr、限制映射和poincare,对偶定理都与ga1(kk)的作用相容,所以ga1(kk)在y定义的上同调类上的作用也平凡。”
当最终时刻来临时,整个礼堂都寂静了下来,落针可闻。
原先因代数簇与群映射工具而涌现的一些小声讨论在此刻都消失不见,即便是此刻已经完全听不懂论文报告的学者,心中也涌现出了一股奇妙的感觉。
于是,所有听众都情不自禁的屏住了呼吸,紧紧地盯着舞台上的幕布。
那上面,有着关于霍奇猜想的最后证明步骤。
随着最后一步的到来,徐川将目光从投影幕布上挪开,看向了台下的观众。
深呼吸一次后,他沉稳的开口道:“当i≤n2时,ai(x)nker(Ln2i+1)上的二次型x→(1)iLr2i(x。x)是正定的”
“由此,可得,在非奇异复射影代数簇上,任一霍奇类均是代数闭链类的有理线性组合。”
“即,霍奇猜想成立!”
当最后一句话落下,亚历山大大礼堂中瞬间被如雷的掌声填满。
继Lefschetz在1924年证明霍奇猜想在低维空间中是正确的后,经历了长达近百余年的风雨时间,不管最终的结论如何,但在这一刻,那个站在舞台上的天才少年,用自己的理论终结了一个世纪难题。
并且,征服了来自全世界数学家!
(本章完)